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Abstract 

We present the evaluation of possible quantitative applications of the TSR (thermographic signal reconstruction) 
technique in the simple case of the adiabatic homogeneous plate with the application of the measurement of thickness or 
diffusivity. Theoretical and experimental analysis of the identification is achieved, leading to recommendations in view of 
obtaining a precise and reliable evaluation of these parameters. In particular, the use of the first logarithmic derivative of 
the thermogram is recommended instead of the second logarithmic derivative. The method when applied to homogeneous, 
constant-thickness and quasi adiabatic samples allows to consider the front-face measurement as a possible flash 
diffusivity technique with an accuracy comparable to that of the classical rear-face diffusivity method of Parker. 

 
1. Introduction 

 
The TSR (Thermographic Signal Reconstruction) method proposed by Shepard [1-5], is well known and largely 

used in Non-Destructive Evaluation. The method, used for pulsed thermographic experiments, consists in: 
- the fitting of the experimental log-log plot thermogram by a logarithmic polynomial: 
 

 
      ln(�T ) = a0 + a1 ln(t ) + a2 [ln(t )]2.K + an [ln(t )]n  (1) 

 

This fitting is particularly well suited for pulse heating. It is sometimes called Logarithmic Fitting Adiabatic (LFA) [6]. 
- the replacement of the sequence of temperature increase images, �T(i,j,t), by the series of (n+1) images of the 

polynomial coefficients: a0(i,j), … an(i,j). This operation allows a drastic reduction of the data amount. From this series of  
(n+1) images it is then possible to reconstruct the full sequence of the experiment. 

- the use for NDE purpose of the second derivative of the thermogram,     d
2 ln(�T / �T� ) / d ln(Fo)2, the derivation 

being achieved directly on the polynomial, then without increase of the temporal noise. 

The TSR technique enhances the detectivity of defects i) by reduction of  diffusion blurring and temporal noise, ii) 
improvement of the contrast between sound and defective areas, iii) production of images unaffected by a non uniform 
illumination, a non uniform absorptivity, or spurious radiations from environment including illumination sources and camera, 
and allows a high data compression, which makes possible the fusion of multiple sub-windowings of extended structures 
without artefacts [5]. These interesting performances have been recently corroborated by other groups using either the 
TSR technique alone, for instance to detect defects in GLARE [7], or in conjunction with the Pulse Phase Thermography 
approach, which is in this case considerably improved when detecting defects in honeycomb structures [8]. 

Despite an abundant literature, until now the use of the TSR technique remains relatively qualitative, if we except recent 
papers from Shepard [4, 9]. As explained in the last reference, the situation is explicable since most of the applications of the 
method deal with NDE problems for which excellent detection performances are more important than precise properties 
measurements. The aims of the present work is the evaluation of possible quantitative applications of the TSR technique. The 
simpler case is presently analyzed: the adiabatic homogeneous plate with the application of an accurate measurement of the 
distribution of thickness or diffusivity in a plate. Although the TSR technique is essentially used for inspection of more complex 
structures presenting defects such as delaminations, debonds, voids…, this simple case is interesting because it allows to 
highlight the characteristic advantages of the technique and the way its quantitative use can be achieved. This approach is 
followed by Shepard in [4]. Here the approach is analogous but the exact analytical solutions are explicitely given for the first two 
derivatives expressed as functions of the Fourier number and the study is focused on the accuracy with which the 1

st
 and 2

nd
 

logarithmic derivatives are approximated using the double derivation of the fitting polynomial and, finally, on the accuracy reached 
on the identified diffusivity or thickness. 

 
2. Analytical expressions of the thermogram and its derivatives in the case of an adiabatic homogeneous slab. 

 
The surface temperature of an adiabatic slab receiving a Dirac of energy is governed by the well-known formula: 
 

    
�T / �T� =1+ 2 e

�n
2
�

2
Fo

1

�
�   (2) 

 

where Fo is the Fourier number of the slab, equal to Fo = �t/L
2
 and �T� the final isothermal increase of temperature equal 

to Q/�CL, Q being the density of energy (or fluence) entered in the slab and �C the volume heat capacity. In the present 
case the temperature increase is depending on a unique variable, the Fourier number, and consequently on two physical 
parameters which are the diffusivity, �, and the thickness of the slab, L. Each parameter can be identified from the 
thermogram if the other is known. 
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The first and second logarithmic derivatives of the thermogram are: 
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Here the decimal logarithms (log(u) or log10(u)) are used, being much more practical in physics than the natural 
logarithms (ln(u) or loge(u)). This explains the existence of the constant A in Eq. (4): A = loge(u)/log10(u) = loge(10) = 2.30216. 

Figure 1 presents the pulse thermogram and the first and second logarithmic derivatives calculated following Eqs. 
(2-4). The thermogram can be split in three successive parts: a straight line of slope -0.5 in log-log domain, which 
corresponds to the semi-infinite medium regime, followed by a transition regime due to the finite thickness of the slab and 
characterized by a progressive decrease of the slope, and finally a final adiabatic plateau with an in-depth isothermal state 
of the slab. The  2

nd
 derivative presents a monopolar signature with a characteristic positive peak. In practice, especially if 

the material is a poor conductor, due to the existence of heat losses on both faces of the slab, the final plateau is replaced 
by a progressive return to the initial state ( �T� = 0). In this case the 2

nd
 derivative peak is attenuated and followed by a decrease 

down to negative values. In the aforementioned more complex situations (structures with defects such as delaminations, 
debonding, voids, flat bottom holes), the 2

nd
 derivative signature becomes more complex, especially if the extent of the defect is 

laterally limited, inducing 2-D and 3-D heat diffusion which adds a negative peak followed by a second positive peak. 
The Fourier number for which the 2

nd
 derivative peaks corresponds to a critical Fourier number Fo* = 1/�, for which 

the 1
st
 derivative presents an inflection and reaches half its minimum value,  

 

    
[ d log10(�T / �T� ) / d log10(Fo) ]

Fo *
= �0.25 .  (5) 

 

The critical time or Fourier number Fo* can be also determined on the thermogram itself as being the intersection of 
the extrapolated straight line of the semi-infinite medium regime with the extrapolated final plateau [10]. 

The peak value of the second derivative, using Eq. (4) is: [d
2 log10(�T/�T�)/d log10(Fo) 2

]
Fo*

 = 1.0904. This peak 
value must depend on the reflection coefficient, R, due to the rear face of the slab, which can be considered as an 
interface between the slab material and the air. R = (ei-ej)/(ei+ej), ei and ej being the effusivities of the materials in contact 
at the interface. The air effusivity being negligible, in the present case R = 1. In all other cases, encountered interfaces 
such as delaminations or contacts between different solid layers layers will be characterized by a smaller reflection 
coefficient, producing softer variations of the slope of the thermogram and consequently smaller peak values for the 2nd 
derivative. The finite lateral extents of encountered interfaces produced by defects leading to 3-D diffusion will have the 
same consequences on the peak value of the 2

nd 
derivative. They will produce lower peak values. In consequence, the 

value must be considered as the maximum maximorum of the possible values of this derivative. 
The 2

nd
  derivative curve can be approximated with a very good accuracy by a Gaussian curve, as already 

described by Shepard  et al. [4]. Here the Gaussian fitting leads to: 
 

    d
2 log10(�T / �T� ) / d log10(Fo)2 = 1.09 e

�14.8 [log10 (Fo / Fo*)]2

= 1.09 e
�14.8[log10 (� Fo)]2

 (6) 
 

The R
2
 coefficient calculated on the Fo domain [0.05-2] is equal to 0.99981 which corresponds to an excellent fit. 

Figure 2 compares the exact 2
nd

 derivative curve and the approximate curve (Gaussian) and presents the corresponding 
residuals. They are smaller than 0.5% and localized at the feet of the Gaussian curve. 

 

  

Figure 1. The pulse thermogram and its derivatives in log-log domain. 

Case of the homogeneous adiabatic plate. 

Figure 2. 2
nd

 derivative approximated by a Gaussian. 

Comparison to the exact solution and residuals. 
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3. Inverse problem: identification of the thickness or diffusivity 
 
Although the approximated expression of the 2

nd
 derivative, Eq. (6) could be used for solving the inverse problem of 

determining the diffusivity or the thickness (see Ref. [4]), we will focus on the simple way based on the determination of 
the critical Fourier number Fo* corresponding to both the inflexion point of the first derivative and the apex of the second 
derivative. Regarding the first derivative, this is a simple way of identification, similar to the one proposed by Parker et al. [11] 
for identifying the diffusivity from the half-rise time of the rear-face pulse thermogram. In both cases (1

st
 and 2

nd
 derivatives) no 

absolute temperature measurement is needed, but only the detection of the occurrence of these phenomena (inflection and 
peak). The weakness of the method  is that it does not take into account all the information contained in the full curves f’(t) and 
f”(t) and that it is not flexible. Nevertheless, for a uniform diffusivity and constant-thickness adiabatic slab, it is well adapted. 

The �/L
2
 parameter is deduced from the critical Fourier number expression:     Fo* = � t * / L

2
= 1/ � , leading to:  

 

     � / L
2

= 1/(� t*) . (7) 
 

t* being deduced by one of the three possible methods already presented (intersection of the straight parts of the 
thermogram, half-rise point of the 1

st
 derivative, peak occurrence of the 2

nd
 derivative). 

The TSR approach offers a solution for calculating the logarithmic derivatives of the thermogram: the fitting (least mean 
squares) of the thermogram by a logarithmic polynomial (expression [1]) and two successive derivations of  this polynomial.  

    

log10(�T ) = P(log10(t )) = ak log10(t )[ ]
k

0

n

� , (8) 

    

d log10(�T ) / d log10(t ) = � P (log10(t )) = k ak log10(t )[ ]
k�1

1

n

� , (9) 

    

d
2 log10(�T ) / d log10(t )2 = � � P (log10(t )) = k (k �1)ak log10(t )[ ]

k�2

2

n

� . (10) 

It is worth noting that no normalization of the thermogram is needed when using the first and second logarithmic 
derivatives. In other words, the possible non uniformity of the fluence or of the absorptivity/emissivity of the material have no 
influence on the logarithmic derivatives, at least if the characteristic length of their in-plane variations is several times larger 

than the slab thickness. This is the reason why in Eqs. (8-10) the thermogram is not normalized (we use �T instead of �T/�T�). 

To obtain a realistic estimate of the intrinsic accuracy of this TSR approach, it is necessary to start from a 
polynomial fitting of the exact theoretical thermogram, given by Equation (2): 

 

    
P log10(t )( ) = ak [log10(t )]k

0

n

� � log10(1+ 2 e
�n

2� 2� t / L
2

1

�

� ) , (11) 

 

The possible influence of the sampling period, �Fo, if any, has not been studied and is supposed negligible. Here, 

�Fo has been taken equal to 0.01. 

The comparison between the values of �/L
2
(t) or Fo identified using the polynomials Eqs. (8-10) to the values used 

to calculate the thermogram (equation [2]) allows us to estimate the accuracy of the identification from the critical time t*. 
Figure 3 presents the so-fitted thermogram and its 1

st
 and 2

nd
 logarithmic derivatives. Two degrees have been 

considered for the polynomial P: 6 and 9, and two domains of Fo for the fitting: [0.01-5] and [0.05-1.6]. Both parameters 
have a strong influence on the quality of the fitting, especially for the 2

nd
 derivative which appears logically very sensitive to 

them. The maximum and the width of the peak region are respectively too low and too large when n = 6, but very near of the 
theoretical values for n=9. The use of the degree 6 combined with a wide fitting domain leads to a “wavy” curve for P” which 
could make the detection of the second derivative “bump” questionable and difficult a fully automatic data reduction process. 

These qualitative observations can be quantified by calculating the coefficient of determination R
2
 of the polynomial 

P, P’ and P”. This is possible since we know the exact expression of the thermogram and of its 1
st
 and 2

nd
 derivatives. 

For n=9 the three fitting polynomials are satisfying since their R
2
 is not far from 1. For n=6, P’ is satisfactory but P” cannot 

be used since the coefficient is negative which characterizes a very poor correlation between the data and the fitting. In 
all cases we see in Table 1 that each derivation of the fitting polynomial produces a degradation of the quality of the fitting. 

 

 

Table 1.  Degradation of the coefficient R
2
 

with the successive derivations of the 

polynomial P fitting the exact analytical 

expression of the thermogram, Eq. (2). The 

R
2
 coefficients of the derivative polynomials 

are calculated by comparison to the exact 

analytical expressions of the logarithmic 

derivatives of the thermogram,  Eqs. (3,4). 
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Figure 3.  Fitting by a polynomial of the theoretical thermogram given by Eq.(2). Combined influences of the degree of the 

polynomial and of the extent of the Fourier domain considered for the fitting. 

 

 

 

Table 2.  Accuracy i) of the 

identified values of the critical 

Fourier number, Fo*, deduced 

from the analysis of the P’ and  

P”, ii) of the peak value of P”. 

 

    

Figure 4.  a) Accuracy of the critical 

Fourier number, Fo*, identified 

from the half-rise occurrence of 

the 1
st
 derivative fitted by the 

polynomial P’, and from the peak 

occurrence of the 2
nd

 derivative 

fitted by the polynomial P”, as a 

function of (1-R
2
) of P; b) 

Degradation of R
2
 due to the 

successive derivations. 

 

The accuracy of the identification of the critical Fourier number, Fo*, is presented in Table 2. The accuracy on the 
value of the peak of the 2

nd
 derivative is also given. It is worth noting that the accuracy of the identification is always 

satisfying when using the 1
st
 derivative, which is not the case for the 2

nd
 derivative. 

Figure 4a shows that the accuracy of the identification is correlated to the determination coefficient R
2
 and Figure 

4b that each successive derivations of the fitting polynomial P produces a degradation of the quality of the fitting, 
characterized by  a gap to 1 of the coefficient R

2
 which increases by roughly two orders of magnitude.  

 

4. Conclusions drawn from the theoretical analysis 
 
The thermogram and its derivatives are the exact analytical solutions and they are not affected by any noise. The 

accuracies obtained can be considered as intrinsic of the TSR method. In practice, they can be affected by noise. This will 
be studied in the experimental part. 

The accuracy of the identification of the parameter �/L
2
 from the occurrence time t* of the peak value of the 2

nd
 

logarithmic derivative approximated by the 2
nd

 derivative of the fitting polynomial of the full thermogram, P’’, is dependent 
on the degree of the polynomial which must be high (n>6) in the present case, and highly dependent on the fitting time 
domain (see Table 2). If the fitting is made from the full thermogram (including the initial straight line of slope -0.5 and the 
final adiabatic plateau) even a polynomial degree as high as 9 leads to errors higher than 5% (and sometimes much more) 

on the occurrence time t* and consequently on the identified parameter �/L
2
.  

Using the occurrence of the half-rise of the first derivative seems more reliable and precise since the errors are less 
than 3% for the whole cases analyzed in Table 2. 

Finally, the determination coefficient R
2
 is a good criteria to judge of the reliability of the fitting and of the accuracy of the 

identification. It could be used for optimizing the choice of the parameters (polynomial degree and size of the domain fitted). 
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5. Experimental validation  
 
The proposed method has been verified by the measurement of the diffusivity of a metallic slab of known and 

uniform thickness. The sample was illuminated by two flash lamps (Elinchrom 6000 J) located symmetrically in front of the 
sample at a distance of 60 cm. The duration of the pulse is estimated to be less than 4 ms, and the fluence 0.2 J cm

-2
.The 

temperature of the front-face or of the rear face was monitored by a long-wave infrared camera Jade from Cedip Company 
equipped with a LW 2.0 lens. The image frequency was 200 Hz. The sample was a 10 cm x 10 cm, 10 mm-thick plate of 
Dural. Such a sample satisfies perfectly the assumption of adiabaticity which is assumed in the theory presented here.  

 

5.1. Experimental thermograms 

 

The plate was tested with and without a 15 μm-thick carbon-black coating on the front face. The experimental 

thermograms are presented in Figure 5. For each case, two thermograms are presented: in grey the temperature evolution of 
a single pixel and in black the mean temperature of a disk-shape region, centred on this single pixel and containing 26 pixels. 
This second thermogram has a better signal-to-noise ratio. 

The uncoated sample leads to temperature increases which are 51% of the ones of the coated sample. The coating has 

an influence on the shape of the thermogram up to 0.1 s, a time higher that the usual period (roughly evaluated to four times the 

pulse duration, here 0.014 s) at the end of which the finite duration effect becomes negligible, allowing the thermogram to follow 

the 1 t  law. This is due to the coating effusivity, much lower than the metal effusivity. Thus, at the very beginning, the front-face 

temperature is higher than that of the uncoated metallic plate. The thermogram is in a transition phase, progressively more and 

more influenced by the metallic substrate. This two-layer effect is not present in the uncoated sample thermogram which follows 

the 1 t  law after 0.01 s. So, the data reduction must consider just the part of the thermogram after 0.1 s in the case of the coated 

sample, the only case considered due to the poor signal-to-noise ratio of the uncoated sample thermogram and that 3-D internal 

heat transfer due to a non uniform absorptivity of the Dural sample can be detected in the transition phase and in the final plateau. 
 

a   b  

Figure 5.  Experimental 

thermograms obtained with 

with a 10-mm thick Dural 

plate. a) Front-face pulsed 

thermograms with and without 

a carbon-black coating; b) 

Rear-face thermograms on 

the same sample and 

determination of the diffusivity 

from the half-rise time of the 

mean thermogram of a zone 

comprising 194 pixels. The 

fluence is the same as for the 

front-face measurements. 

 
5.2. Results of the logarithmic polynomial fitting and of the diffusivity identification 

 
The TSR technique is applied to both single-pixel and 26-pixel thermograms to study the possible influence of the 

noise on the results. Like in the theoretical study, the fitting is conducted with polynomials of degree 6 and 9, and for two 
time domains: i) the first domain considered [0.1 s - 2.65 s] is be the entire thermogram, excepted the part before t = 0.1 s 
for the reason given previously, ii) a second domain, less wide, [0.3 s - 1.5 s] is also considered. In total, there will be eight 
different cases analyzed (2 thermograms x 2 polynomial degrees x 2 time domains). No detailed discussion will be given 
about each of the eight presented cases, but a synthetic analysis will be given in the following section. 

As seen in Figure 5a, the noise of a single pixel is important. For instance at the end of the experiment (adiabatic 
plateau) the signal to noise-ratio, taken as the ratio of the mean value of the plateau to the standard deviation for the 
plateau region, is only equal to 14. 

Figure 6 (first line) presents the results of the fitting of the thermogram of a single pixel for four different combinations of 
the two parameters: degrees of the polynomial and time domain considered for the fitting. In each case the graph presents the 
thermogram, the polynomials P, P’ and P” and the critical time, t*, determined following the three procedures: i) intersection of the 
extrapolated straight line corresponding to the 1 t  region (obtained by a linear fitting) with the extrapolated plateau, ii) abscissa 
of the half-rise P’ curve, iii) abscissa of the peak of the 2

nd
 derivative, P”. 

All the parameters identified from the thermogram and from the logarithmic polynomials P’ and P” are exhaustively 

presented in Table 3. These parameters are: i) the critical time, t* (three different evaluations), ii) the diffusivity, �, which is 

deduced using Eq. (7) and alternatively the thickness, L, iii) the difference with the diffusivity deduced on the rear face of the 
same sample from the Parker’s formula, value which can be considered as the reference, iv) the accuracy on the identified 
thickness which is half that of the diffusivity, v) as a complementary information: the parameter R

2
 for the polynomial P. 

The thermogram of the rear-face is presented in Figure 5b. This thermogram is obtained in the same conditions of 
illumination. For  a single pixel, the signal-to noise ratio is  very low: 13. In effect, the fluence is relatively low and corresponds to 
classical non destructive tests on large structures. In classical thermophysical characterization conditions, specially dedicated 
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benches deliver higher fluences. Nevertheless, it is interesting to compare front-face and rear-face measurement obtained with 
the same illuminator, camera and sample. For a good accuracy, the considered thermogram is the mean temperature calculated 
on a zone of the image comprising 194 pixels. In this case the signal-to-noise ratio is satisfactory: 63. The diffusivity is calculated 
from the half-rise time Parker’s formula, recommended in the present case since there is no noticeable heat losses: 

 

� = 0.139 L
2
/ t1/2 (12) 

 

Finally, the polynomials obtained in the case of the 26 pixel thermogram for the four different combinations of the two 
parameters: degrees of the polynomial and time domain considered for the fitting, are presented in Figure 6, second line. 

 

 
 

Table 3. Diffusivity of the coated Dural sample, deduced from the thermo-gram and from the logarithmic polynomials P’ and 

P”, and comparison to the rear-face determination using Parker’s formula. 
 
5.3. Analysis of the experimental results 

 

The results of the real thermograms are notably different from those of the theoretical analysis (sections 3 and 4). 
The graphs presented in figures 6 show that the results obtained with the lower polynomial degree (n = 6) are better than 
those obtained with the higher degree tested, n=9: i) the shapes of the derivatives curves are closer to those of the theoretical 
curves, ii) the value of the 2

nd
 derivative peak and the width of the Gaussian shape are closer to the theoretical values. The 

explanation lies in the fact that the theory supposes no noise and just a perfect 1-D conduction process. When considering 
real thermograms, with noise and possible 3-D conduction due to non-uniform illumination and non-uniform optical properties 
of the sample, the increase of the polynomial degree (the degree of freedom) gives more influence to the noise and more 
flexibility to be contaminated by parasitic effects. These phenomena increase with the noise, as demonstrated by comparing 
the results from the 26 pixel thermogram (S/N = 46) to those of the single pixel thermogram (S/N= 14). 

The beneficial influence of a decrease of the size of the temporal domain considered for the fitting no more exists. A 
reverse influence is in fact shown for both degrees n=6 and n=9. The explanation could be that the quantity of information coming 
from the thermal phenomena is decreasing when reducing the time domain contrarily to the noise information which remains 
constant. This is quantified by a decrease of the R

2
 coefficient of the polynomial P when the size of the time domain decreases. 

An important point is that the first derivative is less sensitive to the noise than the second derivative, in particular in 
its half-rise region, which is important since the critical time t* is inside this part of the curve. 

From a quantitative point of view, the quality of the identification methods can be assessed by comparison of the 
identified diffusivities to the diffusivity measured by the rear-face experiment on the same sample, using the Parker’s 
formula. We can state that: i) the method which consists to determine the intersection of the two straight parts of the 
thermogram (1 t  part and final plateau) leads to pretty good results (accuracy of -1% and -6%); ii) the TSR method using  
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Figure 6. Dural sample with carbon-black coating. First line: fitting of the single pixel thermogram for the time domain 

[0.1 s - 2.65 s] and [0.3 s – 1.5 s], using logarithmic polynomials P of degrees 6 and 9; Second line: fitting of the mean 

thermogram of a 26 pixel zone for the same time domains and polynomial degrees.  

 

 

Figure 7. Accuracy of the 

diffusivity, �, identified from the 

critical time t* as a function of 

the R
2
 coefficient of the 

logarithmic polynomial P. On 

the left: deduced from the half-

rise of the first derivative, P’. On 

the right: deduced from the 

peak of the second derivative, 

P”. 

 
the first derivative and a low noise thermogram leads to very good results (errors between -3%  and 1%) and fair results 
with the noisy thermogram (errors between -2% and -12%); iii) the TSR method using the second derivative leads to erratic 
and sometimes bad results with both thermograms (errors between -21% and +17%). 

In practice, the question is: how to select the best combination of polynomial degree and time domain for the fitting? The 
answer could be found in the R

2
 coefficient. Figure 7 presents the errors on the diffusivity as a function of the R

2
 coefficient of the 

polynomial fitting the thermogram, P, whatever be the values of parameters: noise, polynomial degree, time domain. In figure 7-
left, the accuracy of the diffusivity determination is rather well correlated with the R

2
 parameter for the values deduced from 

the occurrence time of the half-rise point of the 1
st
 derivative. For R

2
 coefficient near of 1 the quality of the results are very 

precise (a few percents). For the diffusivity deduced from the occurrence of the peak of the second derivative, the scatter 
on the accuracies is very large and no correlation can be deduced. The adjunction of the third parameter, the noise, makes 
the things much complicated, impeding to confirm the results of the numerical simulations. 

From this last analysis we could deduce a practical strategy to optimize the conditions of use of the TSR method in 
the specific application considered here: i) to use the first derivative first, ii) to try different fittings with various polynomial 
degrees and different time domains, iii) to choose the combination leading to the higher R

2
 coefficient, the closer possible 

of unity. The use the second derivative, in the present case is not recommended.  
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6. Conclusion and perspectives 
 
This quantitative study of the Thermographic Signal Reconstruction (TSR) method is strictly limited to the case of a 

front-face measurement in view of determining alternatively the diffusivity or the thickness of a plate shaped sample in 
adiabatic conditions. Consequently, the conclusions resulting from the theoretical analysis and from the application of the 
method to the measurement of the diffusivity of a Dural sample are only valid for this specific case. 

The theoretical study is based on the exact analytical expressions of the thermogram and of its logarithmic derivatives. 
The TSR approach is applied to the exact analytical thermogram and the resulting 1

st
 and 2

nd
 logarithmic derivative polynomials 

are compared to the exact solutions. The influence of  the degree of the polynomials and of the time domain considered for the 
polynomial fitting has been studied, showing a sensitivity of the shape of the 2

nd
 derivative making its quantitative use 

(identification of the diffusivity or thickness) somewhat difficult in practice. On the contrary, the use of the 1
st
 derivative appears 

more reliable and precise. The calculation of the determination coefficient R
2 

shows that the successive derivations of the fitting 
polynomial produce a degradation, which may become inacceptable in many cases for a quantitative use of the 2

nd
 derivative. 

The theoretical study has been completed by the analysis of thermographic experiments. Two front-face pulsed 
thermograms obtained on a plate of Duraluminum, characterized by different signal-to-noise ratios, have been analyzed  and 
completed by a rear-face experiment leading to a good estimate of the diffusivity of the sample. The influence of the degrees 
of the polynomials and of the extent of the time domain considered have been analyzed. The conclusions of the experimental 
study are not so clear as the ones of the theoretical analysis, highlighting the strong influence of the noise, not considered in the 
theory. Nevertheless, the results recommend the use of the half-rise point of the 1

st
 logarithmic derivative polynomial and 

confirm in this case the correlation between the accuracy of the identification and the R
2
 coefficient of the fitting polynomial. 

It would be interesting to complete this study of the adiabatic plate by evaluating and comparing the accuracy reached 
by the approach presented by Shepard [4], which, starting from the fact that the 2

nd
 derivative is very close to a Gaussian, fit 

the thermogram by a function resulting from the double integration of a Gaussian function. 
Due to the fact that the variance of the noise on log10[�T(t)], at time t, for a signal to noise ratio not too low, is equal to 

�
2
/�T(t), another improvement of the method could be, for the estimation of the polynomial coefficients, ai, the replacement of 

the linear least-square method by a modified method in which the squares of the differences would be divided by their 

variance approximated by �
2
/�T(t) (private communication from Denis Maillet and ref. [12]). 

In the future, it is envisaged to apply the methodology of the quantitative approach followed in this study to more 
complex situations, in particular to plate with heat losses, samples with a non-uniform in-plane diffusivity or a non-uniform 
thickness, layered structures with resistive defects or interfaces…  
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